Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Esp Med Nucl Imagen Mol ; 32(2): 92-7, 2013 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-23332663

RESUMO

PURPOSE: To optimize radiolabeling with (99m)Tc of mannosylated Gantrez(®) nanoparticles loaded with the Brucella Ovis antigen (Man-NP-HS) and to carry out biodistribution studies in mice after ocular administration of the nanoparticles. MATERIAL AND METHODS: Man-NP-HS nanoparticles were prepared by the solvent displacement method. They were purified, lyophilized and characterized. Following this, they were radiolabeled with 74 MBq of (99m)TcO4(-) previously reduced with an acidic stannous chloride solution, working in absence of oxygen and at a final pH of 4. Radiolabeling yield was evaluated by TLC. Biodistribution studies were carried out in mice after ocular administration of the formulation and control of free (99m)TcO4(-). To do so, the animals were humanely killed at 2 and 24hours after the ocular administration and activity in organs was measured in a Gamma counter. RESULTS: Radiolabeling yield obtained was greater than 90%. Biodistribution studies of (99m)Tc-Man-NP-HS showed radioactivity accumulated at 2 and 24hours in nasal and ocular mucosa and gastrointestinal tract, in contrast to biodistribution of free (99m)TcO4(-) that remained concentrated in the skin around the eye and gastrointestinal tract. CONCLUSION: Biodistribution studies of (99m)Tc-Man-NP-HS after ocular instillation have made it possible to demonstrate its biodistribution in nasal mucosa and gastrointestinal tract. This characteristic is essential as an antigenic delivery system throughout the ocular mucosa. This, together with its elevated immune response, effective protection and intrinsic avirulence make them a suitable anti-Brucella vaccine candidate.


Assuntos
Vacina contra Brucelose/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Vacinação/métodos , Administração Oftálmica , Animais , Sistemas de Liberação de Medicamentos , Feminino , Marcação por Isótopo/métodos , Maleatos , Camundongos , Camundongos Endogâmicos BALB C , Polímeros , Polivinil , Compostos Radiofarmacêuticos , Tecnécio , Distribuição Tecidual
2.
Vaccine ; 29(41): 7130-5, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21651945

RESUMO

Adjuvant research is being oriented to TLR-agonists, but complement activation has been relatively unexplored. In previous studies it was demonstrated that poly(methyl vinyl ether-co-maleic anhydride) nanoparticles (PVMA NPs) used as adjuvant differentially activate dendritic cells through toll like receptors (TLR) stimulation, however, a high dose of these NPs was used. Now, we demonstrated a dose-response effect, with a concentration as low as 20µg/mL able to stimulate TLR2 and TLR4 transfected dendritic cells. In addition, we investigated whether PVMA NPs are able to exploit also the immunomodulatory benefits of complement activation. Results indicated that the hydroxylated surface of these NPs highly activated the complement cascade, as measured by adsorption studies and a complement fixation bioassay. Stable binding of C3b to NPs was confirmed as indicated by lability to SDS treatment after washing resistance. Complement consumption was confirmed as the lytic capacity of complement exposed to NPs was abolished against antibody-sensitized sheep erythrocytes, with a minimal inhibitory concentration of 50µg NPs, equivalent to a surface of 1cm(2). On the contrary, nanoparticles prepared with poly(lactic-co-glycolic acid) (PLGA), used as a reference, did not consume complement at a concentration ≥3mg NPs (≥40cm(2)). Complement consumption was inhibited when PVMA NPs were cross-linked with diamino groups (1,3-diaminopropane), indicating the role of hydroxyl groups as responsible of the phenomenon. These results favour a model whereby PVMA NPs adjuvant activate complement on site to attract immature antigen presenting cells that are activated through TLR2 and TLR4.


Assuntos
Adjuvantes Imunológicos/metabolismo , Imunidade Inata , Maleatos/metabolismo , Nanopartículas/química , Polietilenos/metabolismo , Receptores Toll-Like/agonistas , Ativação do Complemento , Complemento C3b/metabolismo , Células Dendríticas/imunologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...